Unusual thermal Hall effect in the 3*d* cobalt Kitaev system Na₂Co₂TeO₆

<u>Heejun Yang^{1,2,*}</u>, Chaebin Kim^{1,2,*}, Ysun Choi^{1,2}, Jun Han Lee³, Gaoting Lin⁴, Jie Ma⁴, Marie Kratochvílová⁵, Petr Proschek⁵, Eun-Gook Moon⁶, Ki Hoon Lee⁷, Yoon Seok Oh^{3,#} and Je-Geun Park^{1,2,§}

¹Center for Quantum Materials, Seoul National University, Seoul 08826, Republic of Korea
²Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
³Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
⁴Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
⁵Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
⁶Department of Physics, Korea Advanced Institutes of Science and Technology, Daejeon 34141, Republic of Korea
⁷Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
*These authors contributed equally to this work Email: ysoh@unist.ac.kr and jgpark10@snu.ac.kr

Kitaev physics has recently attracted attention in condensed matter for its anticipated novel quantum spin liquid state. The thermal transport measurement is crucial for probing the novel features of charge-neutral quasiparticles. In this letter, we report a significant thermal Hall effect in Na₂Co₂TeO₆ (NCTO), a Kitaev spin liquid candidate, when the magnetic field is applied along the out-of-plane direction of the honeycomb plane. The thermal conductivity (κ_{xx}) and thermal Hall conductivity (κ_{xy}) in NCTO reveals distinct magnetic field dependences below and above the Neel temperature (T_N) of 27 K. For $T>T_N$, κ_{xx} has a monotonic decrease in the field dependence, while κ_{xy} persists up to $T^* = 150$ K. On the other hand, both κ_{xx} and κ_{xy} exhibit complex field dependence for $T<T_N$. We found that the experimental κ_{xy} data are inconsistent with reported magnon or phonon Hall scenarios. Comparing the similar thermal properties of NCTO and α -RuCl₃, we suggest that both NCTO and α -RuCl₃ would share the origin for thermal Hall effect.