Synthesis of *c*-axis oriented Al-doped MgB₂ and charge carrier density characterized by Hall measurements

Tien Le*, Jung Min Lee*, Soon-Gil Jung**, Tuson Park**, Won Nam Kang*+

* Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea

** Center for Quantum Materials and Superconductivity (CQMS), Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea

Email: wnkang@skku.edu

We synthesize *c*-axis oriented Al-doped MgB₂ thin films on an Aluminum buffered layer of Al₂O₃ substrates by Hybrid Physical-Chemical Vapor Deposition (HPCVD) and have measured the longitudinal and the Hall resistivities in the *ab*-plane direction. X-ray Diffraction (XRD) shows a clear peak of 25.97° of (0001) Mg_{1-x}Al_xB₂ compared to 25.29° of (0001) MgB₂, indicating Al substituted on Mg position with *x*~0.25. The 185-nm Mg_{1-x}Al_xB₂ shows *T*_{c,0} of 21.5 K with a broadened transition width of ~11 K. The broad transition is due to the high concentration dopants of Al, which also happened in bulk single crystals of Al-doped MgB₂. In the normal state, the Hall coefficient (*R*_H) is positive like pure MgB₂ and decreases as the temperature increases. The cotangent of the Hall angle was found to follow *a* + β T² behavior from 120 K < T < 300 K. At T = 100 K, *R*_H = 18.97 × 10⁻¹¹ m³/C from which the hole charge carrier density was determined to be 3.29 × 10²² /cm³ supports the hypothesis that Al³⁺ substitutes for Mg²⁺ by hole-neutralizing electron doping.